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Abstract

The (2+1)-dimensional modified Kadomtsev—Petviashvili (mKP) equation is
decomposed into the known (1+1)-dimensional Kaup—Newell (KN) equation.
By using the nonlinearization of the Lax pair, a classically integrable
Hamiltonian system in the Liouville sense and the involutive solution of the
mKP equation (1.1) are obtained from the first two nontrivial KN equations.

PACS numbers: 05.45.Yv, 02.30.1k

1. Introduction

More and more (2+1)-dimensional soliton equations have been decomposed into known
(1+1)-dimensional soliton equation [1-5]. For example, the KP and mKP equations were
decomposed into the AKNS, Chen-lee-liu and Jaulent—Miodek equations, and the special
(2+1)-dimensional Toda equation was decomposed into the (1+1)-dimensional Toda equation.
In the present paper, by using the known (1+1)-dimensional KN equation [6], with the
transformation w = %uv we are going to decompose the (2+1)-dimensional integrable mKP
equation
Wy = e Werx — 6w wy — 12w, wy + 1207 wyy) (1.1)
where 87! f(x,y,1) = [*_ f(s.y,t)ds. By using the nonlinearization of Lax pairs,
under the constrained condition induced by the eigenfunction expression of the potential
ux) = — Z;V:l )L_,-qu.(x), v(x) = Z;V:l Y pf(x), we obtain a classically integrable Hamilton
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system in the Liouville sense [7] and an involutive solution of the mKP equation (1.1). In
[3], a similar equation to (1.1) was decomposed into other (1+1)-dimensional equations, and
a quasi-periodic solution was obtained.

2. The decomposition of the mKP equation

In this section we decompose the mKP equation (1.1) into the two coupled (1+1)-dimensional
KN equations. To achieve this we firstly derive the KN equation hierarchy and Lax pairs. The
KN equation hierarchy is the isospectral class of the eigenvalue problem:

—A u @1
=M M= = . 2.1
Px ¢ ( . x) @ ( ¢2) 2.1)
On the basis of investigating the zero-curvature form of the KN equation:
M, —V,+[M,V]=0 2.2)

we have the fundamental identity:
Ve+[M,V]= M, (P(K —)*])y) (2.3)

where [M,V] = MV — VM is the commutator, P maps (a, b, ol — (a,b)T,y =
v, 72, v3)7,

M, (Su, $v)" = A (0 6“) V=0(y)= (M’S V2 >

Sv 0 VI —AW3

0 8 0 -1 —u 5
K=19 0 0 J=211 0 v a:a— 00 =079 =1.

000 u —v 9 .

The Lenard gradients g;, the KN vector fields X ; and the jth-order KN equations are defined
recursively by

Kgi-1=1Jg; Jg_1=0 g1 =@,u,—DT
d (u .
XJZPJg] J v =Xl ]21,2,
J
The first few above are as follows:
v, — uv? Vyy — UV, + %u2v3
1 1
8-1= 80 = 5 —uy — utv g1 = I Uyy +3uvu, + %u3v2 2.4)
-1 uv

UV, — VU, — %(uv)2

1 /— — (u? 1 [ty + 3(uviy), + 2 @30?),
Xo = (ux> X =t ( Uy (u2v)x> X, = ( )x +5( ) .
Uy 2\ Uyxx — (uv7), 4 \ vy — 3ovy), + %(u2v3)x

(2.5)
The first two nontrivial KN equations are
wy = =3+ @) vy = 3 — 00))
Uy, = ' (u”x + 3(uvuy ), + %(uSUZ)x)

1
1 3.,2,3
U, =3 (Uxxx = 3(uvv,), + j(u v )x) .



On the decomposition of modified KP equation and involutive solution 1301

Let#; =y, t, = t. Then the first two nontrivial KN equations have the forms:

Uy = _%(uxx + (uzv)x) Vy = %(Uxx - (Uzu)x) (2.6)
Uy = i (uxxx + 3(uvuy), + %(”31}2))() 2.7
U = i (Uxxx = 3(mvvy)y + %(uzv3)x) . (2.8)

Now we consider the composition of the mKP equation (1.1). It is a well-known fact that KN
equations (2.6)—(2.8) are compatible since the flows determined by them are commutable. We
assume that (u, v) is a solution of equations (2.6)—(2.8), and introduces w = %uv. Then by
direct calculation we obtain theorem 2.1.

Theorem 2.1. Let (u, v) be a compatible solution of the KN equations (2.6)—(2.8). Then
w(x,y, 1) = %u(x, v, Hv(x, y, t) is a solution of the (2+1 )-dimensional mKP equation (1.1).

Proof. From (2.6) we obtain

wy + 3w, = —%(vux — UV )y 8_1wy + %wz = —i(vux —uvy) (2.9
0wy +dwwy — Lwi + 3w 0wy + 2w, = —Lu,vy) (2.10)
yy y 4 XXX X y 2 X — 2 xUx)x .

w; — iwxxx +3ww, +6w2wx + 3wx8_1wy = —%(uxvx)x. (2.11)

Hence we have
1 3,2 3 -1 3q-1
Wi — e Warx T+ W Wy + 7w, 0wy — 307wy, =0. (2.12)
O

Remark. Under the transformation (x,y,?,w) — (x, =2y, 16t,q), equation (1.1) is
transformed into equation (1.11.28) in [8]. Hence equation (1.1) is called the mKP equation.

3. The KN-Bargmann system

Consider N copies of the KN eigenvalue problem (2.1):

D - 1))
=i =1,2,....N (3.1)
<Pj)x j( v A ) \pj /

with distinct eigepvalues A=A A #FNGF#],j=1,2,...,N).
Let A = diag(hi, 22, ..., An), ¢ = (q1.92,---.q0)", p = (p1, p2,..., py) and
(g, p) = Z;V:l q;p;j which is the standard inner product in R”". We give the transformation

N N
u(x) = —(Aq,q) ==Y hjq;(x)  v(x)=(Ap,p)= ) A;p;(x). (3.2)
j=1 j=1
Then linear equation (3.1) is transformed into a system of the nonlinear equation:
2 dHy
4x =—A%q = (Aq.q)Ap = —=
p
) dH,
px=A’p+(Ap, p)Aq = T (3.3)

Hy = —(A%q, p) — $(Aq.q)(Ap, p).
This procedure is called nonlinearization of the Lax pairs [9—11]. To discuss the integrability
of (3.3), we first give the two very useful lemmas.
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Lemma 3.1. If M and V are two smooth two-order matrices, tr(M) = 0 and V, = [M, V],
then F = detV is constant along the x-flow.

My, M, > (Vll V12>
(le —My, Vor Vo

From V, = [M,V]= MV — VM we have

Proof. Let

dV11 dV22
—— =MpVay —MyVip=—-———
dx dx
dVip
—— = =2M | Vio+ M2V — Vi1 M1,
dx
o™ —2M 11 Vo + Mo Vg — Voo Moy
By a direct calculation we have
4 Ve — Vi)
o = gV 12V21
dVan dviy dVyy dvip
=V 2 v, Ty, Sy, T2
g 23, 7 214y 0

Lemma 3.2 (Liouville-Arnold lemma [7]). If, in a canonical system with n degrees of freedom
(i.e. with a 2n-dimensional phase space), n independent first integrals in involution are known,
then the system is integrable by quadratures.

Now we consider the problem of integrability of the KN-Bargmann system (3.3). On
standardization condition that ffooo (vp? +4riqip; — up?) dx = 1, the gradient Vi; =
(8x;/8u, 8x;/8v)T = (Ajpi, —)\jqf)T . We extend VA4 ; into VA ; = ()Ljpf, —quf, quj)T,
which satisfies the Lenard eigenvalue problem (K - )»3 J )VA_; = 0. Condition (3.2) is put into
the general form

N
g-1=Y Vi =(Ap.p).—(Aq.q).(q. p)). (G4
j=1
Consider the Lenard eigenvalue problem
(K =22))G; =0. (3.5)
The solution of (3.5) is

Yoown o &1 (M Qi(Ap. p)
Gr= Z 32 _J)Lz = Z 22 _)‘./"1/2‘ = | —.(Aq,q) (3.6)
/= i AN Q.(q, p)
where
g
) = (W =AY 'g ) =) S
j=I1 J
oo N 00
= 2| e |2 = Y ate
k=0 \ j= k=0

E=ELE, . ENT n=mm. )"
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In fact
N 42 2
KVa; — A2 JV}L A JVA; —A*JVA;
2 _
(K —22N)G; = Z - = Z —
j=1 j=1 J
N N
=Y (=IVapy=J = V| =—Jg =0 (3.7)
j=1 j=1
By the fundamental identities (2.3) and (3.7), the Lax equation along the x-flow
Ve =[M, V]
has a solution
A2.(q. p)  —Su(Aq, q))
=0l (QA(Ap, P —12(q. ) ©:8)

which is called the Lax matrix of the KN-Bargmann system (3.3). By using lemma 3.1, (2.3)
and (3.5) we obtain that F;, = detV, is constant along the x-flow. Therefore we have the
generating function of integrals of (3.3):

o0
Fy = —2Q}(q, p) + 2.(Aq, @) (Ap, p) = Y Frqa ¢ (3.9)

where

Fy=—(q.p)’=-1 (q.p)=—1
Fo = (Aq.q)(Ap. p) +2(A%q. p)
Fo= ) (A™q g (A p,p)— D (A™q,p)(A™q,p)  k=0,1,2,...

m+n=k m+n=k+1

(3.10)

By comparing the coefficients of the A~?¥*1 in (3.9), F_, Fy and F; are obtained.
We consider the generating function F; as a Hamiltonian in the symplectic space
(R?*M,dp A dg). The canonical equations are

d dF.
()= () s
By a direct calculation we obtain
OF, [opr = —202Q,(q. p) (12 — 32) g + 22 (Aq. ) (A% — 32) " Ap
_Z)LV)L“()\Z _ )\/%)71% B ZVAIZ(AZ _ )»;f)flApk
IF,/dq = —2)°.(q. p)(A* — )w%)_lpk +29,(Ap. p) (32 — Ai)-lAqk
= _2)“/)\11()»2 _ )L;%)_lpk + 2V)LZI()Lz _ )“]%)_IAQ](.

Hence we get the canonical equation

d
_<qk) = W, (b, A2) (q") k=1,....,N (3.11)
dr, \ Pk Dk

2M 2 12
Wik, ) = —5—— Vi + (0 Vl). (3.12)

where
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Proposition 3.1. The Lax matrix 'V, satisfies

d
d‘E)L
(Fu, F,) =0 Vi, neC (3.14)
(Fj,F)=0  Yjk=0,1,2,... (3.15)

where (-, -) is the Poisson bracket in (R*,dp A dq).

Proof. By a direct calculation we get

v, _d oo
ar —dn(u w(q, p))
d d
=pu <<(1M2 a1 L p> +<(1u«2 — AN g, —p>)
dr; dr,
aF. dF.
=pn({Up? = a2 p)+{Up? — A g, ——=
op dq
2 12,21 12y,21 12y,21 12v,21
:_)H_M(V/\ Vu _Vu Vi )_)Lz_ﬂz(vx\ Vu _Vu Vi )
av!iz 4 dg
—r =~ (=Q,(Aq,q)) = 2{Up*— A TAg, —
ar, drk( u(Aq, q)) (I )" Agq dr,
dF.
= —2<(1u2 — A)™'Aq, —A>)
ap
4 12y/11 4)‘ 12y/11 11y,12
=k+MVA v, +k2_M2(VA v, = Vviv,.?)
dv?! d d
N:—Q A, =2 ]2—A2_1A,—p
ar dn( w(Ap, p)) <( e )" Ap .

JF;
o)

4 21y, 11 4x 11y,21 21y/11
= e e (Ve V= V).

Hence we have (3.13), which implies the invariance of F,, = detV,, along the 7,-flow. By the

definition of the Poisson bracket we have
dF,
(F,Fp)=—=0 Vi, u e C. (3.16)
d'L')L

From (3.9), (3.14) and (3.16) we have (3.15). By using lemma 3.2 and (3.15) we derive that
the KN-Bargmann system (3.3) is classically integrable in the Liouville sense. ]
4. Other integrals { H;.} and involutive solution

In order to establish the direct relation between finite-dimensional Hamiltonian systems and
the KN vector fields X; and X;, we define a new set of integrals { H;} by
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Hy = —(A%q, p) — 3(Aq.q)(Ap, p)

H, = —(A%. p) — 3(Aq. q)(A’p., p) — 3(Ap. p)(A’q. q)
— 3(Aq. q)(Ap, p)(A’q, p>—§<Aq,qV<Ap,pF

Hy = —(A%, p) +(A%q, p)(A*q. p) — $(Aq.q)(A’p, p) @.1)
— 1{Ap, p><A5q q) — 3(Aq. q¢)(A’p, p) — HiHy

Ho=—5 Y Eﬂh+§ S (4%, phA¥g, p)

m+n=k—1 m+n=k+1

. Z A2m+1 A2n+1 ’p> k=1,2,...

m +n=k

which is put in the equivalent form
—AF = (1+H)?

with the help of the generating function

o0
— Z Hk)\—Z(kH).
k=0

The involutivity of { H;} is based on the equality

1
H, H)=———(F, F)=0 Vi, u e C. 4.2
(Hy, Hy) " FAF,L( e £3) Iz 4.2)

Theorem 4.1. The KN-Bargmann system (3.3) has a N-involutive system Hi,k =
0,1,2,...,N —1.

Denote the variable of the H,,-flow by #,,. Then the canonical equation with Hamiltonian H,,

is
d [q JdH,,/op
— = =0,1,2,...,N — 1. 4.3
dtm (17) <_8Hm/861) " ( )

Theorem 4.2. Let x =ty,y =t1,t =12, (q, p)T = (q(x, y, 1), p(x, y,))T be a compatible
solution of (4.3) (m = 0, 1,2). Then (u,v)" = (—(Aq, q), (Ap, p)T = h(q, p) solves the
KN equations (2.6)—(2.8):

5 (o)
— () =huvH) =X, “4)
dy \v
d ("N o avEy) = X 45
a(y)— «( h) = X». 4.5)

Proof. h,(8u, sv)T = (=2(Aq, 8q),2(Ap, p))T. By direct calculation we have

OH
uy = —2(Aq, qy) = 2<Aq, 3p1> 2(A%q, q) — 2u(A*q, p) +2(A%q, p)(A’q. q)
—uv(A3q, q) — 2u(A%q, p)* +u*v(Aq, p) (4.6)
9 Hy 3 5
uy = —2(Aq, qx) = —2<Aq, op > 2((A°q,q) —u(A7q, p)) 4.7
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dHy 3 )
vx = 2(Ap, px) = 2(A, g | T 2((A%p, p) +v(A%q, p)) (4.8)

Uy + W), = —4(A%q, q) +4u(A%q, p) — 4(A%q, p)(A’q, q) +2uv(A’q, q)
+4u(A%q, p)* — 2uv(A%q, p). 4.9)

From (4.6) and (4.9) we obtain the first of (4.4). The second of (4.4) is similarly obtained,

J0H,

ur = —2(Aq,q,) =-2 ACI, W
=2(Aq"q) — 2u(A®q, p) — Hyux — Hou,
=2(A"q, q) — 2u(A®q, p) +2(A%q, p){Adq, q) — uv(A’q, q)

—4u(A%q, p)(A'q, p) +2(A%q, p)*(A’q, q) — 4uv(Aq, p)(A’q, q)

—2u(A%q, p)’ +3u*v(A’q, p)* +u’v(A'q, p) + 3u*v*(A’q, q)

— 3PV (A%q, p) +2(A%q, p)(A%q. q) — u(A’q, q)(Ap, p)

+u?(A%q, p)(A’p, p) +v(A’q, q)? (4.10)

Uyxx + 3vuy), + 3Wv?), =8(A"q, q) — 8u(A%q, p) +8(A%q, p)(A’q, q) —4uv(A’q, q)
—16u(A’q, p)(A*q, p) +8(A%q, p)*(A’q.q) — 16uv(A®q, p)(Aq. q)
— 8u(A2q, p)3 + 12u2v(A2q, p)2 + 4u2v(A4q, p)+ 3u2v2(A3q, q)
—3u’v*(A%q, p) +8(A%q, p)(A’q. q) — 4u(A’q, q)(A’p, p)
+4u?(A%q, p)(A3p, p) +4v(A’q, q)°. 4.11)

From (4.10) and (4.11) we obtain the first of (4.5), the second of (4.5) is similarly obtained.
a

According to theorems 4.2 and 2.1 we obtain the very important theorem 4.3.

Theorem 4.3. Let (g, p)T = (q(x, v, 1), p(x, y, 1)) be a compatible solution of the Hy-flow,
Hy-flow and Hy-flow with x = ty,y =t; andt = t,. Then

w(x, y, 1) = tuv = —1(Aq. q)(Ap, p) (4.12)

is a solution of the (2+1)-dimensional mKP equation (1.1).

The solution (1, v)T = (—(Aq, q), (Ap, p)T given by (3.3) is called the involutive
solution of the KN equation (2.6)—(2.8). And the solution w(x, y, t) given by (4.12) is called
the involutive solution of the (2+1)-dimensional mKP equation (1.1).
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