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Abstract
The (2+1)-dimensional modified Kadomtsev–Petviashvili (mKP) equation is
decomposed into the known (1+1)-dimensional Kaup–Newell (KN) equation.
By using the nonlinearization of the Lax pair, a classically integrable
Hamiltonian system in the Liouville sense and the involutive solution of the
mKP equation (1.1) are obtained from the first two nontrivial KN equations.

PACS numbers: 05.45.Yv, 02.30.Ik

1. Introduction

More and more (2+1)-dimensional soliton equations have been decomposed into known
(1+1)-dimensional soliton equation [1–5]. For example, the KP and mKP equations were
decomposed into the AKNS, Chen-lee-liu and Jaulent–Miodek equations, and the special
(2+1)-dimensional Toda equation was decomposed into the (1+1)-dimensional Toda equation.

In the present paper, by using the known (1+1)-dimensional KN equation [6], with the
transformation w = 1

2uv we are going to decompose the (2+1)-dimensional integrable mKP
equation

wt = 1
16 (wxxx − 6w2wx − 12wx∂

−1wy + 12∂−1wyy) (1.1)

where ∂−1f (x, y, t) = ∫ x

−∞ f (s, y, t) ds. By using the nonlinearization of Lax pairs,
under the constrained condition induced by the eigenfunction expression of the potential
u(x) = −∑N

j=1 λjq
2
j (x), v(x) = ∑N

j=1 λjp
2
j (x), we obtain a classically integrable Hamilton
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system in the Liouville sense [7] and an involutive solution of the mKP equation (1.1). In
[3], a similar equation to (1.1) was decomposed into other (1+1)-dimensional equations, and
a quasi-periodic solution was obtained.

2. The decomposition of the mKP equation

In this section we decompose the mKP equation (1.1) into the two coupled (1+1)-dimensional
KN equations. To achieve this we firstly derive the KN equation hierarchy and Lax pairs. The
KN equation hierarchy is the isospectral class of the eigenvalue problem:

ϕx = Mϕ M = λ

(−λ u

v λ

)
ϕ =

(
ϕ1

ϕ2

)
. (2.1)

On the basis of investigating the zero-curvature form of the KN equation:

Mt − Vx + [M,V ] = 0 (2.2)

we have the fundamental identity:

Vx + [M,V ] = M∗(P (K − λ2J )γ ) (2.3)

where [M,V ] = MV − V M is the commutator, P maps (a, b, c)T → (a, b)T , γ =
(γ1, γ2, γ3)

T ,

M∗(δu, δv)T = λ

(
0 δu

δv 0

)
V = σ(γ ) =

(
λγ3 γ2

γ1 −λγ3

)

K =

0 ∂ 0

∂ 0 0
0 0 0


 J = 2


0 −1 −u

1 0 v

u −v ∂


 ∂ = ∂

∂x
∂∂−1 = ∂−1∂ = 1.

The Lenard gradients gj , the KN vector fields Xj and the j th-order KN equations are defined
recursively by

Kgj−1 = Jgj Jg−1 = 0 g−1 = (v, u,−1)T

Xj = PJgj

d

dtj

(
u

v

)
= Xj j = 1, 2, . . . .

The first few above are as follows:

g−1 =

 v

u

−1


 g0 = 1

2


 vx − uv2

−ux − u2v

uv


 g1 = 1

4




vxx − 3uvvx + 3
2u2v3

uxx + 3uvux + 3
2u3v2

uvx − vux − 3
2 (uv)2


 (2.4)

X0 =
(

ux

vx

)
X1 = 1

2

(−uxx − (u2v)x

vxx − (uv2)x

)
X2 = 1

4

(
uxxx + 3(uvux)x + 3

2 (u3v2)x

vxxx − 3(uvvx)x + 3
2 (u2v3)x

)
.

(2.5)

The first two nontrivial KN equations are

ut1 = − 1
2 (uxx + (u2v)x) vt1 = 1

2 (vxx − (v2u)x)

ut2 = 1
4

(
uxxx + 3(uvux)x + 3

2 (u3v2)x
)

vt2 = 1
4

(
vxxx − 3(uvvx)x + 3

2 (u2v3)x
)
.
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Let t1 = y, t2 = t . Then the first two nontrivial KN equations have the forms:

uy = − 1
2 (uxx + (u2v)x) vy = 1

2 (vxx − (v2u)x) (2.6)

ut = 1
4

(
uxxx + 3(uvux)x + 3

2 (u3v2)x
)

(2.7)

vt = 1
4

(
vxxx − 3(uvvx)x + 3

2 (u2v3)x
)
. (2.8)

Now we consider the composition of the mKP equation (1.1). It is a well-known fact that KN
equations (2.6)–(2.8) are compatible since the flows determined by them are commutable. We
assume that (u, v) is a solution of equations (2.6)–(2.8), and introduces w = 1

2uv. Then by
direct calculation we obtain theorem 2.1.

Theorem 2.1. Let (u, v) be a compatible solution of the KN equations (2.6)–(2.8). Then
w(x, y, t) = 1

2u(x, y, t)v(x, y, t) is a solution of the (2+1)-dimensional mKP equation (1.1).

Proof. From (2.6) we obtain

wy + 3wwx = − 1
4 (vux − uvx)x ∂−1wy + 3

2w2 = − 1
4 (vux − uvx) (2.9)

∂−1wyy + 4wwy − 1
4wxxx + 3wx∂

−1wy + 15
2 w2wx = − 1

2 (uxvx)x (2.10)

wt − 1
4wxxx + 3wwy + 6w2wx + 3wx∂

−1wy = − 3
8 (uxvx)x. (2.11)

Hence we have

wt − 1
16wxxx + 3

8w2wx + 3
4wx∂

−1wy − 3
4∂−1wyy = 0. (2.12)

�

Remark. Under the transformation (x, y, t, w) → (x,−2y, 16t, q), equation (1.1) is
transformed into equation (1.11.28) in [8]. Hence equation (1.1) is called the mKP equation.

3. The KN–Bargmann system

Consider N copies of the KN eigenvalue problem (2.1):(
qj

pj

)
x

= λj

(−λj u

v λj

) (
qj

pj

)
j = 1, 2, . . . , N (3.1)

with distinct eigenvalues λ = λj , λi �= λj (i �= j, j = 1, 2, . . . , N).

Let A = diag(λ1, λ2, . . . , λN), q = (q1, q2, . . . , qN)T , p = (p1, p2, . . . , pN)T and
〈q, p〉 = ∑N

j=1 qjpj which is the standard inner product in RN . We give the transformation

u(x) = −〈Aq, q〉 = −
N∑

j=1

λjq
2
j (x) v(x) = 〈Ap,p〉 =

N∑
j=1

λjp
2
j (x). (3.2)

Then linear equation (3.1) is transformed into a system of the nonlinear equation:

qx = −A2q − 〈Aq, q〉Ap = ∂H0

∂p

px = A2p + 〈Ap,p〉Aq = −∂H0

∂q
(3.3)

H0 = −〈A2q, p〉 − 1
2 〈Aq, q〉〈Ap,p〉.

This procedure is called nonlinearization of the Lax pairs [9–11]. To discuss the integrability
of (3.3), we first give the two very useful lemmas.
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Lemma 3.1. If M and V are two smooth two-order matrices, tr(M) = 0 and Vx = [M,V ],
then F = detV is constant along the x-flow.

Proof. Let

M =
(

M11 M12

M21 −M11

)
V =

(
V11 V12

V21 V22

)
.

From Vx = [M,V ] = MV − V M we have
dV11

dx
= M12V21 − M21V12 = −dV22

dx

dV12

dx
= −2M11V12 + M12V22 − V11M12

dV21

dx
= −2M11V21 + M21V11 − V22M21.

By a direct calculation we have

dF

dx
= d

dx
(V11V22 − V12V21)

= V11
dV22

dx
+ V22

dV11

dx
− V12

dV21

dx
− V21

dV12

dx
= 0.

�

Lemma 3.2 (Liouville–Arnold lemma [7]). If, in a canonical system with n degrees of freedom
(i.e. with a 2n-dimensional phase space), n independent first integrals in involution are known,
then the system is integrable by quadratures.

Now we consider the problem of integrability of the KN–Bargmann system (3.3). On
standardization condition that

∫ ∞
−∞

(
vp2

j + 4λjqjpj − up2
j

)
dx = 1, the gradient ∇λj =

(δλj/δu, δλj/δv)T = (
λjp

2
j ,−λjq

2
j

)T
. We extend ∇λj into ∇λj = (

λjp
2
j ,−λjq

2
j , qjpj

)T
,

which satisfies the Lenard eigenvalue problem
(
K −λ2

j J
)∇λj = 0. Condition (3.2) is put into

the general form

g−1 =
N∑

j=1

∇λj = (〈Ap,p〉,−〈Aq, q〉, 〈q, p〉)T . (3.4)

Consider the Lenard eigenvalue problem

(K − λ2J )Gλ = 0. (3.5)

The solution of (3.5) is

Gλ =
N∑

j=1

∇λj

λ2 − λ2
j

=
N∑

j=1

1

λ2 − λ2
j


 λjp

2
j

−λjq
2
j

qjpj


 =


 �λ(Ap, p)

−�λ(Aq, q)

�λ(q, p)


 (3.6)

where

�λ(ξ, η) = 〈(λ2I − A2)−1ξ, η〉 =
N∑

j=1

ξjηj

λ2 − λ2
j

=
∞∑

k=0


 N∑

j=1

λ2k
j ξjηj


 λ−2k =

∞∑
k=0

〈A2kξ, η〉λ−2k

ξ = (ξ1, ξ2, . . . , ξN)T η = (η1, η2 . . . , ηn)
T .
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In fact

(K − λ2J )Gλ =
N∑

j=1

K∇λj − λ2J∇λj

λ2 − λ2
j

=
N∑

j=1

λ2
j J∇λj − λ2J∇λj

λ2 − λ2
j

=
N∑

j=1

(−J∇λj ) = J


−

N∑
j=1

∇λj


 = −Jg−1 = 0. (3.7)

By the fundamental identities (2.3) and (3.7), the Lax equation along the x-flow

Vx = [M,V ]

has a solution

Vλ = σ(Gλ) =
(

λ�λ(q, p) −�λ(Aq, q)

�λ(Ap, p) −λ�λ(q, p)

)
(3.8)

which is called the Lax matrix of the KN–Bargmann system (3.3). By using lemma 3.1, (2.3)
and (3.5) we obtain that Fλ = detVλ is constant along the x-flow. Therefore we have the
generating function of integrals of (3.3):

Fλ = −λ2�2
λ(q, p) + �λ(Aq, q)�λ(Ap, p) =

∞∑
k=0

Fk−1λ
−2(k+1) (3.9)

where

F−1 = −〈q, p〉2 = −1 〈q, p〉 = −1

F0 = 〈Aq, q〉〈Ap,p〉 + 2〈A2q, p〉
Fk =

∑
m+n=k

〈A2m+1q, q〉〈A2n+1p, p〉 −
∑

m+n=k+1

〈A2mq, p〉〈A2nq, p〉 k = 0, 1, 2, . . .

H0 = − 1
2F0.

(3.10)

By comparing the coefficients of the λ−(2k+1) in (3.9), F−1, F0 and Fk are obtained.
We consider the generating function Fλ as a Hamiltonian in the symplectic space

(R2N, dp ∧ dq). The canonical equations are

d

dτλ

(
qk

pk

)
=

(
∂Fλ/∂pk

−∂Fλ/∂qk

)
k = 1, 2, . . . , N.

By a direct calculation we obtain

∂Fλ/∂pk = −2λ2�λ(q, p)
(
λ2 − λ2

k

)−1
qk + 2�λ(Aq, q)

(
λ2 − λ2

k

)−1
Apk

= −2λV 11
λ

(
λ2 − λ2

k

)−1
qk − 2V 12

λ

(
λ2 − λ2

k

)−1
Apk

∂Fλ/∂qk = −2λ2�λ(q, p)
(
λ2 − λ2

k

)−1
pk + 2�λ(Ap, p)

(
λ2 − λ2

k

)−1
Aqk

= −2λV 11
λ

(
λ2 − λ2

k

)−1
pk + 2V 21

λ

(
λ2 − λ2

k

)−1
Aqk.

Hence we get the canonical equation

d

dτλ

(
qk

pk

)
= Wλ(λ, λk)

(
qk

pk

)
k = 1, . . . , N (3.11)

where

Wλ(λ,µ) = − 2λ

λ2 − µ2
Vλ +

2

λ + µ

(
0 V 12

λ

V 21
λ 0

)
. (3.12)
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Proposition 3.1. The Lax matrix Vλ satisfies

d

dτλ

Vµ = [W(λ,µ), Vµ] ∀λ,µ ∈ C (3.13)

(Fµ, Fλ) = 0 ∀λ,µ ∈ C (3.14)

(Fj , Fk) = 0 ∀j, k = 0, 1, 2, . . . (3.15)

where (·, ·) is the Poisson bracket in (R2N, dp ∧ dq).

Proof. By a direct calculation we get

dV 11
µ

dτλ

= d

dτλ

(µ�µ(q, p))

= µ

(〈
(Iµ2 − A2)−1 dq

dτλ

, p

〉
+

〈
(Iµ2 − A2)−1q,

dp

dτλ

〉)

= µ

(〈
(Iµ2 − A2)−1 ∂Fλ

∂p
, p

〉
+

〈
(Iµ2 − A2)−1q,−∂Fλ

∂q

〉)

= − 2

λ + µ

(
V 12

λ V 21
µ − V 12

µ V 21
λ

) − 2

λ2 − µ2

(
V 12

λ V 21
µ − V 12

µ V 21
λ

)
dV 12

µ

dτλ

= d

dτλ

(−�µ(Aq, q)) = −2

〈
(Iµ2 − A2)−1Aq,

dq

dτλ

〉

= −2

〈
(Iµ2 − A2)−1Aq,

∂Fλ

∂p

〉)

= 4

λ + µ
V 12

λ V 11
µ +

4λ

λ2 − µ2

(
V 12

λ V 11
µ − V 11

λ V 12
µ

)
dV 21

µ

dτλ

= d

dτλ

(�µ(Ap, p)) = 2

〈
(Iµ2 − A2)−1Ap,

dp

dτλ

〉

= −2

〈
(Iµ2 − A2)−1Ap,

∂Fλ

∂q

〉)

= − 4

λ + µ
V 21

λ V 11
µ +

4λ

λ2 − µ2

(
V 11

λ V 21
µ − V 21

λ V 11
µ

)
.

Hence we have (3.13), which implies the invariance of Fµ = detVµ along the τλ-flow. By the
definition of the Poisson bracket we have

(Fµ, Fλ) = dFµ

dτλ

= 0 ∀λ,µ ∈ C. (3.16)

From (3.9), (3.14) and (3.16) we have (3.15). By using lemma 3.2 and (3.15) we derive that
the KN–Bargmann system (3.3) is classically integrable in the Liouville sense. �

4. Other integrals {Hk} and involutive solution

In order to establish the direct relation between finite-dimensional Hamiltonian systems and
the KN vector fields X1 and X2, we define a new set of integrals {Hk} by
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H0 = −〈A2q, p〉 − 1
2 〈Aq, q〉〈Ap,p〉

H1 = −〈A4q, p〉 − 1
2 〈Aq, q〉〈A3p, p〉 − 1

2 〈Ap,p〉〈A3q, q〉
− 1

2 〈Aq, q〉〈Ap,p〉〈A2q, p〉 − 1
8 〈Aq, q〉2〈Ap,p〉2

H2 = −〈A6q, p〉 + 〈A2q, p〉〈A4q, p〉 − 1
2 〈Aq, q〉〈A5p, p〉 (4.1)

− 1
2 〈Ap,p〉〈A5q, q〉 − 1

2 〈A3q, q〉〈A3p, p〉 − H1H0

Hk = −1

2

∑
m+n=k−1

HmHn +
1

2

∑
m+n=k+1

〈A2mq, p〉〈A2nq, p〉

− 1

2

∑
m+n=k

〈A2m+1q, q〉〈A2n+1p, p〉 k = 1, 2, . . .

which is put in the equivalent form

−λ2Fλ = (1 + Hλ)
2

with the help of the generating function

Hλ =
∞∑

k=0

Hkλ
−2(k+1).

The involutivity of {Hk} is based on the equality

(Hµ,Hλ) = 1

λµ
√

FλFµ

(Fµ, Fλ) = 0 ∀λ,µ ∈ C. (4.2)

Theorem 4.1. The KN–Bargmann system (3.3) has a N-involutive system Hk, k =
0, 1, 2, . . . , N − 1.

Denote the variable of the Hm-flow by tm. Then the canonical equation with Hamiltonian Hm

is

d

dtm

(
q

p

)
=

(
∂Hm/∂p

−∂Hm/∂q

)
m = 0, 1, 2, . . . , N − 1. (4.3)

Theorem 4.2. Let x = t0, y = t1, t = t2, (q, p)T = (q(x, y, t), p(x, y, t))T be a compatible
solution of (4.3) (m = 0, 1, 2). Then (u, v)T = (−〈Aq, q〉, 〈Ap,p〉)T = h(q, p) solves the
KN equations (2.6)–(2.8):

d

dy

(
u

v

)
= h∗(I∇H1) = X1 (4.4)

d

dt

(
u

v

)
= h∗(I∇H2) = X2. (4.5)

Proof. h∗(δu, δv)T = (−2〈Aq, δq〉, 2〈Ap, δp〉)T . By direct calculation we have

uy = −2〈Aq, qy〉 = −2

〈
Aq,

∂H1

∂p

〉
= 2〈A5q, q〉 − 2u〈A4q, p〉 + 2〈A2q, p〉〈A3q, q〉

−uv〈A3q, q〉 − 2u〈A2q, p〉2 + u2v〈A2q, p〉 (4.6)

ux = −2〈Aq, qx〉 = −2

〈
Aq,

∂H0

∂p

〉
= 2(〈A3q, q〉 − u〈A2q, p〉) (4.7)
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vx = 2〈Ap,px〉 = 2

〈
A,−∂H0

∂q

〉
= 2(〈A3p, p〉 + v〈A2q, p〉) (4.8)

uxx + (u2v)x = −4〈A5q, q〉 + 4u〈A4q, p〉 − 4〈A2q, p〉〈A3q, q〉 + 2uv〈A3q, q〉
+ 4u〈A2q, p〉2 − 2u2v〈A2q, p〉. (4.9)

From (4.6) and (4.9) we obtain the first of (4.4). The second of (4.4) is similarly obtained,

ut = −2〈Aq, qt 〉 = −2

〈
Aq,

∂H2

∂p

〉
= 2〈Aq7q〉 − 2u〈A6q, p〉 − H1ux − H0uy

= 2〈A7q, q〉 − 2u〈A6q, p〉 + 2〈A2q, p〉〈A5q, q〉 − uv〈A5q, q〉
− 4u〈A2q, p〉〈A4q, p〉 + 2〈A2q, p〉2〈A3q, q〉 − 4uv〈A2q, p〉〈A3q, q〉
− 2u〈A2q, p〉3 + 3u2v〈A2q, p〉2 + u2v〈A4q, p〉 + 3

4u2v2〈A3q, q〉
− 3

4u3v2〈A2q, p〉 + 2〈A4q, p〉〈A3q, q〉 − u〈A3q, q〉〈A3p, p〉
+ u2〈A2q, p〉〈A3p, p〉 + v〈A3q, q〉2 (4.10)

uxxx + 3(uvux)x + 3
2 (u3v2)x = 8〈A7q, q〉− 8u〈A6q, p〉 + 8〈A2q, p〉〈A5q, q〉− 4uv〈A5q, q〉

− 16u〈A2q, p〉〈A4q, p〉 + 8〈A2q, p〉2〈A3q, q〉 − 16uv〈A2q, p〉〈A3q, q〉
− 8u〈A2q, p〉3 + 12u2v〈A2q, p〉2 + 4u2v〈A4q, p〉 + 3u2v2〈A3q, q〉
− 3u3v2〈A2q, p〉 + 8〈A4q, p〉〈A3q, q〉 − 4u〈A3q, q〉〈A3p, p〉
+ 4u2〈A2q, p〉〈A3p, p〉 + 4v〈A3q, q〉2. (4.11)

From (4.10) and (4.11) we obtain the first of (4.5), the second of (4.5) is similarly obtained.
�

According to theorems 4.2 and 2.1 we obtain the very important theorem 4.3.

Theorem 4.3. Let (q, p)T = (q(x, y, t), p(x, y, t))T be a compatible solution of the H0-flow,
H1-flow and H2-flow with x = t0, y = t1 and t = t2. Then

w(x, y, t) = 1
2uv = − 1

2 〈Aq, q〉〈Ap,p〉 (4.12)

is a solution of the (2+1)-dimensional mKP equation (1.1).

The solution (u, v)T = (−〈Aq, q〉, 〈Ap,p〉)T given by (3.3) is called the involutive
solution of the KN equation (2.6)–(2.8). And the solution w(x, y, t) given by (4.12) is called
the involutive solution of the (2+1)-dimensional mKP equation (1.1).
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